您现在的位置:首页 > 案例分析案例分析

基于NCPl65l控制器的90W反激式单级PFC变换器原理与设计

发布时间:2017-01-09 06:07:09  来源:大电流电感厂家   查看:

过电压比较器IC3C的输出与IC3B的输出进行“或”运算。在过电压情况下,IC3C输出变为OV,使IC4中LED电流达到最大值,占空比减小到零,直到输出电压降至过电压限制电平以下。
IC3D被配置成差分放大器,用于感测DC输出电流,提供一个经二极管进行“或”运算的信号进入反馈分压器。过载电流限制被设置在满载的125%,即(P0/U0)1.25=(90/48)×1.25=2.34A。电阻R31和R32用作感测输出电流,R29、R30用作设置电流感测放大器增益。放大器增益为:

G=(R29/R30)+1=(3kΩ/0.3kΩ)+1=11

放大器输入电压为:2.34A×(R31+R32)=2.34×0.14Ω=0.33V。差分放大器输出电压为:0.33V×G=0.33V×11=3.63V。
当输出负载电流增加时,电流感测放大器输出也相应增加。当放大器输出电压与_二极管D12的电压降之差值高于2.5V时,误差放大器IC3B反相输入端上的电压被拉高,IC3B输出电压降低,IC4中LED电流增大,lC4中晶体管电流相应增加,NCPl65l脚8上的电压降低,占空比减小,从而实现限流过载保护。
2.2 主要元件的选择
在功率元器件选择时,需要考虑初级侧电流。当变换器在CCM工作时,电流波形如图3所示。

在MOSFET(S1)导通期间,电流在初级侧流动。在MOSFET关断期间,电流在次级侧流动。


2.2.2 变压器的选择
变压器T1是反激变换器中的关键元件。变压器初级与次级绕组之间的匝数比n=Np/Ns,直接影响初级侧的电压值。为了减小漏感产生的尖峰脉冲电压,应尽可能降低变压器漏感。
为了减小输出反射到初级的电压,选择匝数比n=4,初级Np=76匝,次级Ns=19匝。
为了减小漏感.选择TDK SRW42EC-U04H1/4宽窗口磁心,以减少绕组层数。同时,为了增强耦合,初级与次级绕组交错是有利的。具体绕制方法是:先绕初级的45匝(一层),接着绕次级19匝,然后再绕初级剩下的3l匝。按该法绕制,漏感仅为9μH。初级绕组的电感值Lp=1 mH。

如果把76匝初级绕组分两层绕完后再绕次级绕组19匝,漏感值将增加到37μH。
2.2.3 功率MOS插件电感FET(S1)的选择
MOSFET的选择,首先应确定其额定值电压(VDS)。在MOSFET关断期间,漏极与源极之间的峰值电压为:


式中:Uin(max)=265V;
Uf为次级整流二极管(D5)的导通压降,Uf=0.7V;
Uspke为漏感产牛的尖峰脉冲电压,选择
Uspike=130V,有足够的安全余量。
将已知数据代入式(4)得:


S1可选择SPAlIN80C3型N沟道MOSFET,其额定电压UDS=800V,额定电流ID=11A,导通态电阻RDS(on)=4.5Ω。
2.2.4 输出电容器的选择
输出电容Co值由式(5)确定:


式中:TH为所需保持时间,即AC线路绕行电感的周期时间,TH=1/50Hz=O.02s;
Uo(min)为最小输出电压,选择U一体成型电感器o(min)=33V。
将相关数据代入式(5)得:


Co用两个1500μF/63V的电容并联而成,即在图2中,C22=C23=1500μF。
2.2.5 电流感测电阻R5的选择
电流感测插件电感器电阻R5的计算公式是:


电路中其它元件,可根据NCPl65l的芯片电路组成和电气参数确定其数值。


3 结语
基于单级PFC控制器NCPl651的90W通用输入反激式变换器,仪需用一个功率开关和较少量的元件,就能获得高输入功率因数和低输入电流THD。在115V的AC输入电压和满载下,变换器PF=O.998,THD=3.12%;在230V的AC输入和满载下,PF=O.97l,THD=6.8%。从85V到230V的AC输入和从无载到满自制电感载变化时,输出电压调节率小于O.02%,输出电压纹波仅为2VP-P。NCPl651为设计分布式电源获得单级PFC和步降变换,提供了行之有效的创新方案。平面变压器厂家 | 平面电感厂家

我想做一个这样的曲线波形图怎么做我想做一个这样的曲线波形图怎么做  要实时显示数据用的  














我现在只能做成这样的0点的x y和刻度都在下边  我想都做到中间去 应该怎么做  求高人指点

基于单颗CP212X实现TFT液晶屏模组供电系统本文介绍了采用低成本、高效率的升压型电源管理芯片CP212X系列产品实现多路正负电源输出,结合TFT模组供电的需求,给出了基于CP212X实现的TFT模组供电系统方案,文中详细讨论了CP212X系列产

关于参考电源的方案设计需求:需要设计4路传感器采集电路,精度要求很高,测试量程为0-100ppm,测试精度为0.01ppm;测试的灵敏度在nA/PPM等级。
4路传感器采用独立的4路模拟前端,每一路需要精度比较高的2.5V

CopyRight2014
大电流电感 | 大功率电感 | 扁平线圈电感 注塑加工厂