您现在的位置:首页 > 技术支持技术支持

一种多路输出军用车载电源的设计

发布时间:2015-07-28 06:18:18  来源:大电流电感厂家   查看:
R1导通。

(2)阶段2〔t1t2t1时刻S关断,首先发生的是谐振复位,漏感上的贮存能量向电容C2转移,产生一个电压尖峰(这是漏感和电容C2的谐振)。然后激磁电感和漏感加在一起和电容C2谐振。因变压器上电压为下正上负,所以副边整流二极管DR1截止,续流二极管DR2 导通。

(3)阶段3〔t2t3〕 当复位电压谐振到超过C1上的电压,二极管D就导通,激磁电流流向电容C1。成为RCD复位的状态。此时激磁电流线性下降。这也保证了复位电压不会过高,从而使得开关管的电压应力得到控制。当激磁电流下降到零,该状态结束。

(4)阶段4〔t3t4〕 激磁电流下降到零之后,二极管D就截止。但是,C2上的能量又会回馈给激磁电感,也就是说,此时是C2和激磁电感发生谐振。C2上电压下降,激磁电流反向增加。直到C2上一体电感电压下降到与输入电压相等,也就是变压器上电压下降到零,该状态结束。

(5)阶段5〔t4t5〕 变压器上电压只要出现一个微小的上正下负的值,副边二极管DR1就导通,激磁电流流过DR1。但是该电流不足以提供负载电流,所以,续流管DR2也继续保持导通,提供不足部分的负载电流。同时DR1和DR2共同导通也保证了变压器上电压为零,激磁电流保持不变。该状态一直保持到开关管S的再次导通。

谐振RC塑封电感D复位正激变换器谐振电容C2的取值应该小于谐振复位正激变换器的谐振电容C,这电感耦合样在谐振复位阶段(阶段2和阶段4)复位电压的上升和下降比较快,所以在同是t2时间内完成复位的情况下,谐振RCD复位正激变换器的平台电压要比谐振复位低,接近RCD复位正激变换器的平台电压。由于C2小于C,但比开关管的结电容还是大很多,因此谐振RCD复位正激变换器变压器的电压尖峰比谐振复位的略大,而比RCD复位的小很多。从以上分析得到,谐振RCD复位正激变换器变压器的电压平台及尖峰都较低,因此,开关应力较低。而在激磁能量损功率电感耗(有部分的激磁能量回馈),开关损耗(C2<C),变压器磁偏(见各种复位方式的激磁电流波形)方面,谐振RCD复位正激变换器是谐振复位正激变换器和RCD复位正激变换器的折衷。

6 饱和电感的应用

由于该电源装置是低压大电流输入和输出,所以,二极管上的反向恢复问题相当严重,尤其是正激变换器的续流二极管DR2。图11(a)是正激变换器的DR2上的电压波形,可以看到有很高的电压尖峰。这不仅增加了损耗,抬高了所需器件的额定电压值,而且对于电磁兼容也是非常不利的。采用饱和电感和二极管串联,如图11(b)所示,可以大大削弱二极管的反向恢复,同时又不会增加很多损耗。加了饱和电感后,二极管DR2上电压波形如图11(b)所示。可以看到加了饱和电感后,DR2上的电压尖峰从将近160V降到了80V。

(a) 不加饱和电感 (b) 加饱和电感

图11 加饱和电感前后DR2两端的电压波形

7 结语

本文阐述了要求非常高的军用车载电源的设计及实验过电感器生产程中的一些特殊问题的解决措施,也提出了一些新颖的观点。这些观点对以后的开关电源设计有一定的借鉴作用。

平面变压器厂家 | 平面电感厂家

500W铅酸蓄电池充电器设计与实现随着各种电动汽车的发展,动力电池充电器的需求将越来越多。充电器质量的优劣关系到电池性能的发挥及寿命、充电器本身的智能化关系到用户的使用方便及电力系统电力计费等管理问题。不同电池,特点不同,充电策略也不

iFIX软件在计算机中的应用一、概述随着社会电子信息化进程的加快,许多行业计算机中心机房的设备和规模也日趋扩大,与其相配套的环境设备也日益增多,机房的环境设备(供配电、ups、消防、空调、防盗)一旦出现故障,就会影响计算机系统的

MT7990问题各位大神,新人求助,MT7990做恒压12V/2.5A输出,现在输出电压12.3V,但是带轻载0.1A,输出电压就已经拉低1V,而且带载上电启动打嗝!!!

是不是补偿没有调好???















查下变压

CopyRight2014
大电流电感 | 大功率电感 | 扁平线圈电感 注塑加工厂