您现在的位置:首页 > 基础知识基础知识

无线传感器网络节点太阳能电源系统设计

发布时间:2015-07-31 06:02:47  来源:大电流电感厂家   查看:

d.JPG


太阳能电池板未对锂电池进行充电时为了减少LTC4070能量消耗添加三极管Q1,当Q1基极电压下降时将LTC4070与锂电池隔离。在正常充电模式下大部分电流通过Q1流向锂电池。当VCC到达ADJ设置的浮点电压时,LTC4070分流Q1中bc电感测量结的电流持续的减少电池充电电流直至0,并且Q1进入饱和状态。如果热敏电阻T升高浮点电压降低,LTC4070将分流更多的电流,Q1强制进入反偏状态直到电池电压下降。ADJ引脚用于设置浮点电压,当接至地时为4.0 V,接至VCC时为4.2 V,悬空时为4.1 V。当锂电池电压低于3.2 V时LBO拉高D1点亮,当锂电池充电饱和后,HBO拉高,D2点亮。
1.2 供电管理单元
供电管理单元具有2方面的功能:一是为了不使锂电池深度放电,需要对其放电门限进行设置;二是获取当前电池的电压以决定节点采取的功耗模式。
由MAX680及MAX8211构成的锂电池放电门限设置电路如下图3所示。

e.JPG


在该电路中,当锂电池电压下降到由R1和R5所决定的门限电压时,MAX8211就会截止MAX680的供电电压,最后使IRF541处于关闭状态而断开供电电池与负载电路。IRF541功率开关的导通电流小于0.5 mA,关闭漏电流仅为8绕行电感器μA以下。该电路的启动门限Vu和截止门限V1与外加电阻R5,R6和R7之间的关系可由下式给出:
f.JPG
为了能够执行有效的电源管理,需要了解电池能量的储存情况,并根据任务需求和自身能量状态调整工作状态和通信策略。设计中采用LM4041电压基准芯片,有微处理器采样其端电压,并计算电池的实际电压值以供程序处理,其原理图如图4所示。

g.JPG


U4为LM4041—1.2,该芯片为微功耗精密稳压管。电阻Rs负责提供稳压电流IL和负载电流IQ。Rs的取值应满足流过稳压管的电流IQ不超过IQmin和IQmax。Rs的计算公式如下:
h.JPG
式中:当VS取4.2 V,VR取1.2 V,IL+IQ约为120 A,计算出Rs取值约为27 kΩ。在实现过程中,使用ADC0测量稳定电压VQ,选用电池供电电压作为ADC的参考电压Vref。当PC0置“0”时Q3导通,ADC0的读数为ADC_Data。ADC_Data与参考电压Vref的关系如式(4)所示:
i.JPG
式中:VQ为固定值1.2 V;ADC_FS为输入满量程的测量值,是一个常数如10 b的ADC为1 024。由式可以计算出Vref也就得到电池的实际电压。
1.3 电源输出模块
MCU的工作电压一般为2.7~3.3 V,传感器工作电压有3 V和5 V。由于MCU与传感器所需电压不一致,而且锂电池的供电电压为3.7~4.2 V,这就需要进行DC-DC装换。本方案中选用凌特公司的LTC3537芯片。LTC3537具有集成输出断接功能和LD0的2.2 MHz、电流模式同步升压型DC/DC转换器。该器件的升压型转换器内部600 mA开关可从启动时的0.68 V(工作时为0.5 V)至5 V输入电压范围提供高达5.25 V的输出电压,非常适用于锂离子/聚合物或单节/多节碱性/镍氢金属电池应用。LTC3537的应用原理图如图5所示。

j.JPG


将LTC3537的MODE引脚置为低电平工作在PWM模式,ENBST和ENLDO置为高电平工作在正常状态,亦可置为低电平使其截止。大一体电感功率电感两路输出分别为3.3 V和5 V。

2 电源控制流程
根据太阳能电池和锂电池的工作状态,电源的控制流程如图6所示。

3 实验与分析
本设计节点及电源组装如图7所示,实验中采用Micaz节点作为负载节点,将其工作周期设为2%,进行供电实验。

a.JPG


在实验中对太阳能电池板和锂电池电压进行监测,监测间隔为2 h,所得数据如图8所示。实验开始时间为正午12点,系统启动时锂电池为3.7 V,太阳能电池板达到最高输出电压5.1 V,此后锂电池一直进行充电,直至达到饱和电压4插件电感.2 V。进入下午随着太阳光逐渐减弱,太阳能电池板的输出电压逐渐降低。黄昏后太阳能电池板基本无输出并被截断,此时节点进入低功耗模式仅靠锂电池供电,这时采用低功耗方案减少能量消耗,锂电池在黎明时电压降至最低仅3.75V。此后随着太阳光的逐渐增强,锂电池又进入充电状态,在正时午达到最大值,并按上述过程循环。 平面变压器厂家 | 平面电感厂家

一款可实现超低压差CMOS线性稳压器的设计方案随着笔记本电脑、手机、PDA等移动设备的普及,对应各种电池电源使用的集成电路的开发越来越活跃,高性能、低成本、超小型封装产品正在加速形成商品化。LDO(低压差)型线性稳压器由于具有结构简单、成本低廉、

新型同步整流电路的设计随着国防、航空航天科技的发展,广泛用于通信、电子对抗等领域的军用、航空电子产品对供电电源的要求越来越高,它们不仅要求电源技术指标高,还要求体积小、重量轻、效率高、可靠性高。随着电源输出电压的降低及输出

某新型火炮随动系统的性能测试系统设计摘要:提出一种新型火炮随动系统的性能测试系统设计,采用TMS320LF2407A DSP作为火炮随动系统性能测试系统的核心,利用DSP的捕获单元完成了随动系统跟踪速度的实时数据采集,并详细介绍CAN总

CopyRight2014
大电流电感 | 大功率电感 | 扁平线圈电感 注塑加工厂