您现在的位置:首页 > 科技成果科技成果

基于C8051F的OLED控制电路的设计

发布时间:2015-10-27 08:54:58  来源:大电流电感厂家   查看:

1引言有机电致发光显示,又称有机发光二极管(OrganicLightEmittingDiode,OLED)或有机发光显示器OrganicLightEmittingDisplay(OLED),相较于目前市场上流行的液晶显示器(LCD)有明显的优势,主要表现为:自主发光(不需要背光源),无视角问题(视角可达170°以上),重量轻,厚度薄,亮度高,发光效率高,响应速度快(是液晶的1000倍),动态画面质量高,温度范围广(温度范围-40℃~80℃),低功耗,抗震能力强,制造成本低,可柔性显示。尤其适用于要求高亮度的仪表行业,以及条件要求更高的军工产品。与各方面已经发展成熟的LCD相比,OLED的发展还处于初级阶段,但随着以上这些优势的逐步实现,OLED将极有可能取代LCD在市场上的地位,OLED是被业界公认为最具发展前电感器识别景的下一代显示器。

2硬件结构设计本文利用单片机C8051F023作为128×64单色OLED的控制核心器件,采用的是维信诺公司的一款屏VGG12864G,它利用Solomon公司的SSD1303为专用驱动IC。实现文字显示及图像的动静态显示。硬件整体设计结构框图如图1所示。

2。1SSD1303驱动及接口电路

VGG12864G模块的OLED显示屏为128列,64行结构。图2为SSD1303结构框图,显示了模块逻辑电路和接口电路的框图。用户只需要给接口提供电源、产生驱动指令信号和显示数据信号,就能点亮OLED屏。从图中可以看出,行、列驱动器的输出通过FPC邦定到OLED屏,剩下的MCU接口、电压和电流控制器需要是其专门设计的接口和驱动电路,模块的外部信号仅与SSD1303发生关系。所以了解了SSD塑封电感1303的输入特性及指令系统,就能方便地使用本模块了。SSD1303是晶门公司推出的驱动单色OLED的IC,采用TAB封装。这种基于CMOS工艺的驱动IC集成了行、列驱动器、振荡器、对比度控制器和图形数据存储器(GDDRAM),很大程度地减少了外围器件和功耗。可支持的最大分辨率为132×64,其中OLED屏底部132×16的点阵区域可以显示4色的局域色,并可编程实现64级灰度,当用于单色显示时,可编程控制256级对比度。根据所使用微处理器(MPU)的不同,它提供8位6800系列MPU并行、8位8080系列MPU并行和SerialPeripheralInterface(SPI)串行三种通信接口模式。控制命令通过MCU接口输入到控制命令解码器进行命令解码,然后输出时钟、行同步、场同步信号,从而控制OLED显示的振荡频率、显示器件的电压转换模块以及OLED显示内容的行列偏移量的驱动模块;如果是显示数据(128×64bits),那么显示数据由控制电路通过MCU接口输入到GDDRAM缓存,然后通过局域色解码器对数据进行解码,最后将解码后的显示数据通过行列驱动器驱动OLED显示,OLED上呈现了稳定的显示效果。

2。2电源的设计硬件结构设计框图如图2所示,外部硬件电路的DC-DC转换器用TPS7333芯片将5V电源转换成3。3V电源,并将输出的电源信号通过电压和电流控制器控制整个SSD1303的电压和电流。整个系统需要3。3V和12V的电源,MCU(本文采用C8051F023)需要提供3。3V的电源电压,OLED需要3。3V的逻辑电源电压和9~12V的驱动电源电压,此驱动电源电压由外部电源转换器电路提供。2。3各种控制信号再就是关于如何用MCU控制,MCU通过RES#、CS#、D/C、WR#、RD#和D0~D7共13个接口控制SSD1303驱动IC,从而控制OLED显示屏。CS#为片选信号,当C工字电感S#接低电平时MCU才能与驱动IC通信;RES#是复位使能端,当接低电平时,所有控制寄存器均被设定为出厂时的默认状态,同时图像寄存器清零;D/C为数据/命令选择信号;WR#和RD#分别为写和读选择信号,当CS#为低时,在其下降沿读写有效。通过改变D/C、WR#和RD#三个接口的高低,单片机对OLED的控制有四种状态,可由表1显示出来。

表1读写状态一览表

QQ截图20120530134745.jpg

2。4读写的时序

只要按照VGG12864G的时序波形图进行读和写,即可完成OLED的显示。但是,通过软件编程拼时序的话,要考虑到许多时间参数,有一定的难度。为了使得数据和命令能够更容易的顺利读写,我们采用另外一种办法。如图1所示,将WR#和RD#分别接C一体成型电感8051F023的/WR和/RD,即P0。7和P0。6。在C语言编程时定义指针类型为xdata型,它是指向片外存储器的,通过给指针的赋值访问片外的数据存储区,当访问片外存储器时,/RD和/WR会在读和写时自动变低,同时P3端口为数据总线,非复用方式下,地址总线的高8位使用P1口,低8位使用P2口;复用方式下,地址总线高8位仍使用P1口,低8位和数据总线复用P3口,P2口就不会受到影响。所以最好设置成复用方式(EMIOCF。4=0),P2口就可以塑封电感用来作别的输出端口,自由地控制RES#、CS#、DC。虽然不需要地址总线,但访问片外存储器时地址线会被使用,所以仍要避开。实验结果的时序波形图如图3所示。只要CS#为低时,在WR#(RD#)的下降沿写入(读出)数据或命令,即可有效地完成读写的工作。 平面变压器厂家 | 平面电感厂家

驱动大小波问题 本帖最后由 Push_Pull 于 2011-4-23 08:48 编辑 引起大小波的原因是什么?在负载功率降低的情况下,小波就能自动消失,为什么?还有大小波的危害有哪些?满意回复+20maychang 查看完整内容“后级是恒流输出”前级是反激开关电源,后级是线性恒流输出?如果是这样,后级电流调小,使得前级负载变轻,完全工作于DCM,工作稳定。 那么你的开关电源可

[稳压电源]求大神指点万用表测量结果与示波器测现在手上有一个灯具的开关电源,规格:220V/50Hz输入,12V输出。 用福禄克的万用表测量电压为12.07V,用RIGOL的100MHz示波器测量波形如下:幅值显示为Vmax=17.6V,Vmin=6.00V,Vpp=11.6V.我直接测量的电源输出端,我不知道这电压为何变化这么大,电压表测的是平均值,有这么稳定么?为何示波器这么乱。 这个电源是不是很差呢?灯具的开关电源,肯定

[开关电源]开关电源反馈部分疑惑-贡献saber仿真在用SABER仿真电源时,发现在输出部分负载波动大点的话。 就出现间隙式PWM.只有在输出波动很小时,才能连续调节PWM脉宽。 说的不是很清楚,供仿真图。   我本来不希望出现PWM打嗝现象的。   大家来探讨探讨啊。 还是我的反馈电路不好的原因嘛。 这是SABER仿真图1111.rar2015-8-15 09:45 上传点击文件名下载附件11.31 KB, 下

CopyRight2014
大电流电感 | 大功率电感 | 扁平线圈电感 注塑加工厂