您现在的位置:首页 > 科技成果科技成果

新型微波炉电源中ZVS高频变换器的设计及实现

发布时间:2017-02-22 15:45:19  来源:大电流电感厂家   查看:
塑封电感器,在负载侧会表现出电压下降。为了减小变换器的损耗,应该将直流电压增益选的尽可能的高,由原理图可知,这种电路结构下,直流电压增益最大为l,所以,应该尽量选取接近1的增益。
在实际的电路中,设定谐振频率为12kHz,而提高开关电源的工作频率正是研究软开关的主要原因,因为提高开关频率可以使变换器的体积、重量大为减小,从而提高变换器的功率密度。为实现ZVS,还必须使换流的时间小于设定的死区时间,从另一个角度来说,如果死区时间设的足够大,也可以实现ZVS。现设定m=2.5,即实际运行的频率为30kHz。由图5,取Q=0.02,这样直流电压增益可以近似取为l。
2.2 确定变压器变比
假设交流输入220V市电,其峰值约为310V,整流后的电压值取为285V,因为输出电压要求为5 200V,所以变压器二次侧的电压约为2 600V。直流电压增益取为1,所以变压器变比N=285/2600=0.1l。
2.3 确定交流等效电阻Rac
桥式倍压电路部分如图6所示:

由于微波炉所带负载为磁控管,可以看做电阻负载,假设在理想情况下,电容足够大并且变压器副边的输入功率和负载上消耗的功率


2.4 确定谐振电容和电感的值
在Q值已确定的情况下:


3 原理电路的仿真
采用PSPICE作为电感器生产仿真工具,运用所设计的参数,倍压电路的电容设的足够大,仿真电路图如图7(a)所示:

其中C3为VT1的吸收电容,C4和R组成VT2的缓冲吸收电路。仿真结果如图7(b)、(c)所示电感厂家,可见在这个参数下仿真的结果符合软开关的要求。(图中UG为驱动脉冲波形,UCE为IGBT集电极一发射极间电压波形。)

4 样机设计及实验结果
样机采用的电路如图8所示。M为磁控管,驱动脉冲信号的频率为32kHz。考虑到线路的寄生参数,以及一些器件的选用,实际选用的参数有了一定的修改。按照输入电压和电流的要求选用了整流桥的型号,吸收电容的选取根据经验值,并在线路的调试中作了调整。滤波部分的电感和电容也是按照经验值选用的。变压器二次侧的二极管要求高耐压。最后确定的实验样机的具体参数如下表:

图9(a)所示为两开关管的驱动电压,A为主开关管VT1的驱动波形,B为辅开关管VT2的驱动波形,死区时间大约为2μs,占空比接近0.工字型电感5,两管的驱动波形成交替互补关系。图9(b)所示为主开关管(VT1)UGE和UGE塑封电感器两端的波形,图9(c)所示为辅开关管(VT2)UGE和UCE两端的波形,从波形中可以看到,两开关管总是在UCE为零的时候开通和关断,实现了ZVS。

带磁控管工作时,磁控管采用松下公司的2M261-M32,磁控管的开启需要一个远大于其门槛电压的瞬时直流高压,并且需要一段时间的预热,输入交流220V时,电源的输出电压有5 400V,在这个电压下,磁控管预热加速。当磁控管开启后,电压下降至4 600V,并保持稳定。图10所示为带磁控管工作时,磁控管工作瞬间的输出电压的变化。
综上,所设计的模压电感新型微波炉ZVS高频变换器可以实现软开关并可以成功驱动磁控管工作。

5 结束语
本文研究了应用于新型微波炉电源的ZVS高频变换器,在简化的等效交流电路模型下,推倒出谐振电容和电感的值,并对电路的其他部分参数做了匹配。给出了在此基础上进行的仿真和样机实验的波形与数据。通过样机的实验结果可以看到,通过此方法匹配的参数可以实现既定的目标。本文提出的参数设计方法对于拓扑相似电路的参数计算有一定的借鉴和参考作用。平面变压器厂家 | 平面电感厂家

用一个电源芯片为LCD 提供多电源解决方案近几年,LCD液晶显示屏幕不再仅限於在原来的中高档的产品上使用,而在手机和一些便携掌上游戏机上也越来越多的被普及。随着LCD在低端产品上的广泛使用,为这些产品提供一个低价位的LCD电源方案也就显得非常

新颖小功率集成的AC-DC转换器方案介绍随着半导体技术的不断进步,为系统设计师、电路设计师实现技术创新提供了一个先进的技术平台,从而有许许多多新颖的、时尚的便携式电子产品呈现在世人面前,像PDA、3G手机、各种个人电子医疗保健装置以及层出不

高耐压PWM三端开关电源最简单的5V/5W开关电源实际电路如图所示。图中TOP210IC1)为三端PWM开关。IC1中含有PWM控制器,功率MOSFET和各种保护电路。这种5V/5W开关电源的成本比常用的线性电源成本低。该电

CopyRight2014
大电流电感 | 大功率电感 | 扁平线圈电感 注塑加工厂